Title
When Can We Ignore Measurement Error in the Running Variable?
Author(s)
Yingying Dong Yingying Dong (University of California Irvine)
Michal Kolesár Michal Kolesár (Princeton University)
Abstract
In many empirical applications of regression discontinuity designs, the running variable used by the administrator to assign treatment is only observed with error. We show that, provided the observed running variable (i) correctly classifies the treatment assignment, and (ii) affects the conditional means of the potential outcomes smoothly, ignoring the measurement error nonetheless yields an estimate with a causal interpretation: the average treatment effect for units with the value of the observed running variable equal to the cutoff. To accommodate various types of measurement error, we propose to conduct inference using recently developed bias-aware methods, which remain valid even when discreteness or irregular support in the observed running variable may lead to partial identification. We illustrate the results for both sharp and fuzzy designs in an empirical application.
Creation Date
2023-02
Section URL ID
Paper Number
2022-13
URL
https://www.princeton.edu/~mkolesar/papers/rd_rounded.pdf
File Function
Jel
C00
Keyword(s)
Running Variable, Measurement Error, Regression Discontinuity Designs, Bias-aware Methods
Suppress
false
Series
13